Kinematical Analysis along Maximal Lactate Steady State Swimming Intensity.
نویسندگان
چکیده
The purpose of this study was to conduct a kinematical analysis during swimming at the intensity corresponding to maximal lactate steady state (MLSS). Thirteen long distance swimmers performed, in different days, an intermittent incremental protocol of n x 200 m until exhaustion and two to four 30-min submaximal constant speed bouts to determine the MLSS. The video analysis, using APAS System (Ariel Dynamics Inc., USA), allowed determining the following relevant swimming determinants (in five moments of the 30-min test: 0, 25, 50, 75, and 100%): stroke rate, stroke length, trunk incline, intracyclic velocity variation, propelling efficiency, index of coordination and the time allotted to propulsion per distance unit. An ANOVA for repeated measures was used to compare the parameters mean values along each moment of analysis. Stoke rate tended to increase and stroke length to decrease along the test; a tendency to decrease was also found for intracyclic velocity variation and propelling efficiency whereas the index of coordination and the propulsive impulse remained stable during the MLSS test. It can be concluded that the MLSS is not only an intensity to maintain without a significant increase of blood lactate concentration, but a concomitant stability for some biomechanical parameters exists (after an initial adaptation). However, efficiency indicators seem to be more sensitive to changes occurring during swimming at this threshold intensity. Key PointsIn MLSS swimming intensity, stability of the stroke length and stroke frequency occurs after an initial adaptation.Efficiency indicators seem to be more sensitive to possible changes occurring through time at MLSS intensity.MLSS is a useful and practical swimming intensity to be maintained for a long period of time, but some constraints in technique can occur.
منابع مشابه
Lactate minimum underestimates the maximal lactate steady-state in swimming mice.
The intensity of lactate minimum (LM) has presented a good estimate of the intensity of maximal lactate steady-state (MLSS); however, this relationship has not yet been verified in the mouse model. We proposed validating the LM protocol for swimming mice by investigating the relationship among intensities of LM and MLSS as well as differences between sexes, in terms of aerobic capacity. Ninetee...
متن کاملDetermination of Force Coresponding to Maximal Lactate Steady State in Tethered Swimming
The main aim of the present investigation was to verify if the aerobic capacity (AC) measured in tethered swimming corresponds to the maximal lactate steady state (MLSS) and its correlation with 30 min and 400m free style swimming. Twenty-five swimmers were submitted to an incremental tethered swimming test (ITS) with an initial load of 20N and increments of 10N each 3min. After each stage of 3...
متن کاملSevere Obesity Shifts Metabolic Thresholds but Does Not Attenuate Aerobic Training Adaptations in Zucker Rats
Severe obesity affects metabolism with potential to influence the lactate and glycemic response to different exercise intensities in untrained and trained rats. Here we evaluated metabolic thresholds and maximal aerobic capacity in rats with severe obesity and lean counterparts at pre- and post-training. Zucker rats (obese: n = 10, lean: n = 10) were submitted to constant treadmill bouts, to de...
متن کاملEffect of the aerobic capacity on the validity of the anaerobic threshold for determination of the maximal lactate steady state in cycling.
The maximal lactate steady state (MLSS) is the highest blood lactate concentration that can be identified as maintaining a steady state during a prolonged submaximal constant workload. The objective of the present study was to analyze the influence of the aerobic capacity on the validity of anaerobic threshold (AT) to estimate the exercise intensity at MLSS (MLSS intensity) during cycling. Ten ...
متن کاملLactate kinetics of rainbow trout during graded exercise: do catheters affect the cost of transport?
Changes in lactate kinetics as a function of exercise intensity have never been measured in an ectotherm. Continuous infusion of a tracer is necessary to quantify rates of lactate appearance (Ra) and disposal (Rd), but it requires double catheterization, which could interfere with swimming. Using rainbow trout, our goals were to: (1) determine the potential effects of catheters and blood sampli...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of sports science & medicine
دوره 13 3 شماره
صفحات -
تاریخ انتشار 2014